Early Neolithic human exploitation and processing of plant foods in the Lower Yangtze River, China

Article in Quaternary International · April 2016
DOI: 10.1016/j.quaint.2016.03.009

6 authors, including:

Ling Yao
University of Science and Technology of China
7 PUBLICATIONS 15 CITATIONS

Yuzhang Yang
University of Science and Technology of China
8 PUBLICATIONS 6 CITATIONS

Sun Yanan
University of Science and Technology of China
1 PUBLICATION 1 CITATION
Early Neolithic human exploitation and processing of plant foods in the Lower Yangtze River, China

Ling Yao a, Yuzhang Yang a,*, Yanan Sun a, Qilong Cui a, Juzhong Zhang a, Haiming Wang b

a Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China
b Zhejiang Provincial Institution of Cultural Relics and Archaeology, Hangzhou 310014, China

1. Introduction

The Lower Yangtze River was one of the major centres for the origin of rice agriculture in the world. In recent years, along with excavations of several early and middle Neolithic sites such as Shangshan (c. 11,000–9000 cal. BP), Xiaohuangshan (c. 9000–7000 cal. BP), and Tianluoshan (c. 7000–5500 cal. BP), a large quantity of plant remains have been recovered including abundant rice remains in this region. These findings have caused great concern in the academic community and provided new material for investigating the origin of rice exploitation and domestication in the Lower Yangtze River (Jiang and Liu, 2006; Liu, 2006; Fuller et al., 2007; Liu et al., 2007; Zong et al., 2007; Fuller et al., 2009; Zheng, 2009; Nakamura, 2010; Wang et al., 2010; Zhao, 2010; Crawford, 2012). Evidence from morphological trend analysis of rice phytolith show that rice domestication occurred as early as in the Shangshan site 11,000 BP (Wu et al., 2014), and some scholars have speculated that rice consumption must have been very high and was a primary diet resource at the time based on the studies of rice husk impressions remaining in pottery bodies (Zheng and Jiang, 2007). To investigate human subsistence strategies in the early Neolithic Lower Yangtze River, Liu and her colleagues selected six grinding stones and one flaked tool from the Shangshan and Xiaohuangshan sites for plant residue analysis. However, apart from starches from acorns, tubers, Job’s tears and possible water caltrop, no starch grains were identified from rice. Therefore, their paper argued that rice in Shangshan and Xiaohuangshan, most likely wild, was unlikely to have been a primary focus of human subsistence activities (Liu et al., 2010). It is worth noting that grinding stones were regarded as important stone tools used mainly for processing wild plant food resources rather than cultivated rice or millet in the early and middle Neolithic China (Liu et al., 2010; Yang et al., 2009a, b). In this situation, plant residues from grinding stones cannot be used to determine the extent of rice exploitation in the early and middle Neolithic China. To explore the dietary importance of rice and other wild plant foods during the early Neolithic in the Lower Yangtze River, in this paper, 9 pottery bottom sherds and another 6 grinding slabs from the Xiaohuangshan site were examined for starch residue analysis, statistical analysis of percentage presence and the minimum numbers of plants identified by starch grains on the grinding slabs and potteries, it can be found that rice has become one of the major staple foods together with Triticeae grasses, Job’s tears and acorns, which indicates rice should have been cultivated intentionally at Xiaohuangshan. The results also suggest that grinding slabs from Xiaohuangshan were used mainly for processing wild plants other than rice, and plant residues extracted from their surfaces cannot be utilized independently to explore human’s subsistence strategies in that time. In addition, acorns probably were cooked whole in the pottery vessels before they were shelled or ground on the grinding slabs in the Xiaohuangshan site. This paper provides new evidence for the beginning of rice cultivation during the early Neolithic in the Lower Yangtze River.

* Corresponding author.
E-mail address: yzyang@ustc.edu.cn (Y. Yang).

Please cite this article in press as: Yao, L., et al., Early Neolithic human exploitation and processing of plant foods in the Lower Yangtze River, China, Quaternary International (2016), http://dx.doi.org/10.1016/j.quaint.2016.03.009
Fig. 1. Geographical location of Xiaohuangshan and other related sites in this paper.

Fig. 2. Part of unearthed artifacts from Xiaohuangshan site for the residue analysis 1. 05XHSAH66:17; 2. 05XHSAH61:4; 3. 05XHSAH62:1; 4. XHSAH62:2
5. XHSAH62:4; 6. XHSAH62:6:5; 7. 05XHSAH62:2; 8. XHSAH62:1 (Scale bar: 10 cm).
Materials and methods

The Xiaohuangshan site (29°35′15″N, 120°43′18″E) is located at Shandushan village, approximately 100 km southeast of Hangzhou City, Zhejiang Province (Fig. 1). The site was excavated from March 2005 through January 2007 by the Zhejiang Provincial Institute of Cultural Relics and Archaeology, and nearly 5000 m² surface area were collected. All supplies were disposable and boiled in water at 100 °C to eliminate the interest. (iii) Collect residue samples into a clean plastic tube by ultrasonic toothbrush with 1.6 MHz to brush area of 5% Calgon. (iv) The supernatant is transferred and diluted with pure water, and the extinction cross is shaped as either "X". Group AII is a kind of compound starch grain which is typical morphological characteristic of Oryzaeae Tribe (Wei et al., 2008a, b, c) (Fig. 4:e, f, e'). In rice endosperm cells, well developed starch grains are polyhedral with compact arrangement in amyloplast, and these starch grains kept the outline of amyloplast after amyloplast envelope degraded. Poorly developed starch grains are round polyhedral with loose arrangement in amyloplast, and these starch grains could not keep the outline of amyloplast after amyloplast envelope degraded (Wei et al., 2008a, b, c). Starch of Type AII and All are derived from these two cases. In the result of micro measurement, the size of these starches (3.58–8.43 μm) is in ranging of Oryza sativa and Oryz. rufipogon Griff., the mean value of the grain size was slightly higher than that of the modern rice (Fig. 5: a). Evidence of spikelet and phytohyl indicates that the domestication of rice had began from early Neolithic in the Xiaohuangshan site (Zheng, 2009; Wu et al., 2014). We conclude that Type A starch grains may be from the seeds of Aegilops eremi (Fig. 4:c, c') can be divided into two groups. Group AII is polyhedral or round polyhedral shape with centric hilum closed, lamellae invisible and the extinction cross is shaped as "X". Group AII is a kind of compound starch grain which is typical morphological characteristic of Oryzaeae Tribe (Wei et al., 2008a, b, c) (Fig. 4:e, f, e'). In rice endosperm cells, well developed starch grains are polyhedral with compact arrangement in amyloplast, and these starch grains kept the outline of amyloplast after amyloplast envelope degraded. Poorly developed starch grains are round polyhedral with loose arrangement in amyloplast, and these starch grains could not keep the outline of amyloplast after amyloplast envelope degraded (Wei et al., 2008a, b, c). Starch of Type AII and All are derived from these two cases. In the result of micro measurement, the size of these starches (3.58–8.43 μm) is in ranging of Oryza sativa and Oryz. rufipogon Griff., the mean value of the grain size was slightly higher than that of the modern rice (Fig. 5: a). Evidence of spikelet and phytohyl indicates that the domestication of rice had began from early Neolithic in the Xiaohuangshan site (Zheng, 2009; Wu et al., 2014). We conclude that Type A starch grains may be from the seeds of Oryza sp.

3. Results

3.1. Identification of starch grains

A total of 779 starch grains were recovered. According to grain size, morphological characteristics and extinction cross shapes, all these starch grains could be classified into 7 types (A–F) (Table 1). No starch grains were found in the samples of soil and unused surface, indicating that ancient starches were associated with tool use.

<table>
<thead>
<tr>
<th>Serial number</th>
<th>Category</th>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
<th>Type D</th>
<th>Type E</th>
<th>Type F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>XHSBT8@:1</td>
<td>circle foot basin</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>XHSAT0402G6:1</td>
<td>flat-bottomed vessel</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>XHSAT0402G6:2</td>
<td>round-bottomed vessel</td>
<td>20</td>
<td>37</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>122</td>
</tr>
<tr>
<td>XHSAT0402G6:3</td>
<td>flat-bottomed vessel</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>XHSAT0402G6:4</td>
<td>flat-bottomed vessel</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>XHSAT0402G6:5</td>
<td>flat-bottomed vessel</td>
<td>13</td>
<td>25</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>89</td>
</tr>
<tr>
<td>XHSAT0402G6:6</td>
<td>flat-bottomed vessel</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>72</td>
<td>301</td>
<td>361</td>
<td>8</td>
<td>13</td>
<td>2</td>
</tr>
</tbody>
</table>
It is concluded that starch of Type B may come from a wild species of Triticeae Tribe.

Type C (Fig. 3: g, g', h, h') are spherical or oval-spherical in shape, more or less polyhedral with two or three flat facets, centric hilum that normally have T- or linear-shaped fissures, Z-shaped arm on the extinction cross is the typical morphological characteristic of these starch grains. Compared to modern references, starch grains of Type C reveal a great similarity to *Coix lacryma-jobi* (Liu et al., 2014a, b) (Fig. 4: d, d'), which also shows considerable overlapping in size (Fig. 5: c). Starch grains of Job's tears are also found in the Shangshan site (11,400–8600 BP) (Liu et al., 2010) and the Kuahuqiao site (8000–7000 BP) (Yang and Jiang, 2010), which dates covered the Xiaohuangshan period. It is indicated that Type C starch grains may come from Job's tears.

Starch grains of Type D are extremely eccentric hilum and well-defined lamellae, which are generally considered from underground storage organs of geophytes. The major difference among these three types is the shape of grains. Type DI (Fig. 3: i, i') is spherical with smaller size (11.85–28.39 μm, N = 8), while the Type DII (Fig. 3: j, j') is elongated ovate with relatively large size (50 μm, N = 1). The combination of DI and DII is the typical characteristics of starch grains from the root of *Nelumbo nucifera* (4.38–65.66 μm, N = 144) (Wan et al., 2011) (Fig. 4: e, e'). The shape of Type DIII (Fig. 3: k, k', l, l') starch is quadrilateral oval with the size (14.67–33.28 μm N = 13) matching to *Dioscorea opposita* Trunb (12.53–53.36 μm, N = 186) (Wan et al., 2011) (Fig. 4: f, f'). These starch grains have been found in early Shangshan phase (Liu et al., 2010), so it is reasonable to conclude that Type DIII starches originate from the Chinese yam.

Type E (Fig. 3: m, m', n, n') is kidney-shaped, radiated fissures and lamellae are visible. And only two starch grains of this type have been recovered. The morphological characteristics match with starch from Phaseoleae (Liu et al., 2011). Comparing with modern reference of *Vigna* spp (Wang et al., 2013) (Fig. 4: g, g'), type E starch grains (28.22–31.82 μm, N = 2) are similar to *Vigna radiata* (7.09–35.01 μm, N = 187) in size. Starch of *Vigna* spp. has been found from charred residues adhering to pottery sherds at Kuahuqiao (Yang and Jiang, 2010). Due to the limited number of starch grains, Type E may come from the species of Phaseoleae, among which *Vigna* spp. presents the best possibilities.

Fig. 3. Starch grains from residue samples in Xiaohuangshan Site (scale bar: 20 μm) Type A(a, a'). Type AII(b, b', c, c'). Type B(d, d', e, e', f, f'). Type C(g, g', h, h'). Type DI(i, i'). Type DII(j, j'). Type DIII(k, k', l, l'). Type E(m, m', n, n'). Type F(o, o').

Please cite this article in press as: Yao, L., et al., Early Neolithic human exploitation and processing of plant foods in the Lower Yangtze River, China, Quaternary International (2016), http://dx.doi.org/10.1016/j.quaint.2016.03.009
Fig. 4. Comparative starch samples from modern plants (scale bar: 20 μm) a, a': O. sativa (Hunan), b, b': O. rufipogon Griff. (Dongxiang, Jiangxi), c, c': Triticum aestivum L. (Bengbu, Anhui), d, d': Coix lacryma-jobi L. (Bengbu, Anhui), e, e': Nelumbo nucifera (Wuhu, Anhui), f, f': Dioscorea opposita (Hefei, Anhui), g, g': Vigna radiata (Nanyang, Henan), h, h': Quercus acutissima (Hefei, Anhui).

Fig. 5. Comparison of size ranges between ancient starch grains and modern reference. a. Type A and modern cultivated/wild rice; b. Type B and modern cultivated wheat; c. Type C and Job’s tears.
Type F (Fig. 3: o, o’) starch grain is triangular ovate or water drop-shaped, centric hilum and the extinction cross is shaped as “x” and “+”. This morphotype resembles starch from fruits of Fagaceae plants (Yang et al., 2009a, b) (Fig. 4: h, h’). Maximum length measurements reveal that the size of Type F starch (9.73–25 µm, N = 10) is in range of Quercus acutissima (5.4–26.1 µm, N = 132), and higher than Castanea mollissima (3.39–21.85 µm, N = 172).

Furthermore, starch grains of Quercus plants have also been found in early Shangshan phase (Liu et al., 2010). Based on the dates above, Type F are identified as Quercus spp.

3.2. Quantitative analysis

Compared with the total amount of starch grains contained in a plant, ancient starch grains extracted from prehistoric artifacts are very few in number. Also, because of the absence of research on ancient starch preservation mechanism, absolute numerical analysis of ancient starches is inappropriate for assessing economic or dietary importance of plant.

This paper tries to explore the processing methods of different plants by analysing the percentage presence (Pearsall, 2013) of starch grains on the artifacts. Percentage presence is the proportion of samples including a certain starch grain in all examined samples. Considering “presence” and “absence” as statistical standard, error in the quantity caused by non-quantifiable factors can be eliminated as much as possible, so percentage presence of starch grains can reflect the situation of plant processing more accurately along with the increasing of inspected samples.

Given that starch grains of a particular plant come from at least one instance of the plant, the minimum number of plants (Pearsall, 2013) in contact with artifacts can be calculated. Based on this hypothesis, the composition proportion of each plant species on the artifacts could be deduced by minimum number, which reflects the exploitation degree of different plants. Accuracy of this proportion depends on the sampling numbers.

The distribution situation of starch grains from different species on the artifact surfaces is closely related to the implements function, so the statistical analysis of different starch grains on grinding slabs and potteries should be conducted separately (Table 2).

<table>
<thead>
<tr>
<th>Artifacts</th>
<th>Species</th>
<th>Oryza</th>
<th>Triticeae</th>
<th>Coix lacryma-jobi</th>
<th>Nelumbo nucifera</th>
<th>Dioscorea opposita</th>
<th>Vigna</th>
<th>Quercus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slabs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05XHSA0904H51:1</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>05XHSA0904H51:2</td>
<td></td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>05XHSA04G4:16</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>05XHSA04G6:17</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>05XHSAH81:1</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>05XHSAT005:2</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pottery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05XHSAT0805:1</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>05XHSAT0805:2</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>XHSBT8:1</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>XHSAT0402GC:1</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>XHSAT0402GC:2</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>XHSAT0402GC:3</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>XHSAT0402GC:4</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>XHSAT0402GC:5</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>XHSAT0402GC:6</td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Notes: “+” means presence of starch, “−” means absence of starch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The quantitative results (Fig. 6: a, b, a’, b’) show that the percentage presence of C. lacryma-jobi, Triteceae, N. nucifera, Dioscorea opposita and Vigna are consistent with the composition proportion of these plants either on potteries or on grinding slabs, while the situation of Oryza sp. and Quercus spp. is significantly different. Percentage presence and composition proportion of Oryza sp. on the surfaces of potteries are obviously higher than that of grinding slabs. However, Percentage presence and composition proportion of Q. spp. on the grinding slabs are much higher than that of potteries.

4. Discussion

The identification of starch grains from 15 unearthed artifacts indicates that the plant foods human exploited in the early Xiao-huangshan phase include rice, Triticeae grasses, Job’s tears, Chinese yam, lotus root, acorns and beans. Quantitatively, the percentage presence and composition proportion of cereal including Job’s tears, Triticeae grasses and rice are significantly higher than that of other plants, which suggests that cereal was the main plant food during the early Xiao-huangshan phase in the Lower Yangtze River. Job’s tears has a wide geographic distribution in China and is generally used for foods and traditional medicine. Although starches from Job’s tears have been recovered as early as 11.4 ka cal. BP (Liu et al., 2010), and through the whole Neolithic period in eastern China (Yang and Jiang, 2010; Zhang et al., 2011; Wan et al., 2012a, b; Liu et al., 2013; Dong et al., 2014; Li et al., 2014; Tao et al., 2015), the macrobotanic remains of Job’s tears so far have been found only at the Hemudu site in Zhejiang Province c. 7000 BP in China (Yu and Xu, 2000). Today, no evidence shows whether Job’s tears were domesticated in Neolithic China.

A total of 13 genera and 175 species within the tribe Triticeae were distributed throughout China, including 99 endemic and 8 introduced species. More than 50% of these species are members of the genus Elymus, and they are typically used in modern times as forage plants. Chinese genera of known economic value include Triticum, Hordeum, Agropyron, Elymus, Eltigelia and Leymus (Yang and Perry, 2013). Today the Triticeae starchy have been found on scrapers, flake, grinding stones and other artifical implements in many sites both in north and south China through the Upper Paleolithic to the late Neolithic (Liu et al., 2011; Zhang et al., 2011; Wan et al., 2012a, b; Li et al., 2013; Liu et al., 2013; Dong et al., 2014; Guan et al., 2014; Li et al., 2014; Xiaooyan, 2014; Liu et al., 2014a, b).
Lotus and Chinese yams today are widely distributed and used for food in China. Starch granules from lotus root and Chinese yam have been recovered both on grinding slabs and in pottery from the Xiaohuangshan site with a lower percentage presence and proportion of the minimum number. Although these tubers rarely survive identifiably in macrobotanic remains, evidences from starch analysis demonstrate that the exploitation history of lotus and yams in China can be dated back to the Upper Paleolithic and early Neolithic (Liu et al., 2010; Liu et al., 2013). The statistical analysis results in this paper indicate that the exploitation degree of lotus and yams in the early Xiaohuangshan phase is not high.

Vigna plant starches have been recovered from the prehistoric sites both in north and south China (Liu et al., 2010; Yang and Jiang, 2010; Wan et al., 2012a, b; Liu et al., 2013; Dong et al., 2014; Liu et al., 2014a, b). The lower percentage presence and proportion of the minimum number of this plant starches on grinding slabs and potteries show that although it has been used for food in the early Xiaohuangshan phase, Vigna plant was still a supplement food in the subsistence strategies of Xiaohuangshan people.

The middle and Lower Yangtze River is one of the major centres for the origin of rice agriculture in the world, phytolith analysis indicates that rice domestication began from cal. 11,000 BP in the Lower Yangtze River (Wu et al., 2014). However, no rice starches were obtained when 7 stone implements, including 6 grinding stones from the Shangshan and Xiaohuangshan sites were selected for the starch analysis (Liu et al., 2010). To date, the extent of the rice consumption in human’s diets during the early Neolithic is unclear. In this paper, 9 potteries were examined for starch analysis, of which 6 examples were found to have been used for rice processing, indicating rice was a major staple for humans during the early Xiaohuangshan phase. It is worth noting that only a few rice starches were recovered on the grinding slabs in this experiments. This result is consistent with Liu and her colleges studies (Liu et al., 2010), which indicates grinding stones unearthed from Shangshan and Xiaohuangshan site were used mainly to process wild plant food resources other than rice.

Acorns today are distributed widely throughout China, and their history of exploitation can be dated back to the upper Paleolithic.
Macrobotanic remains and starches from acorns have been recovered in many early and middle Neolithic sites in northern and southern China (Liu et al., 2010; Liu et al., 2011; Liu et al., 2013; Xiaoyan, 2014; Liu et al., 2014a, b; Yang et al., 2015), which indicates this nut was an important plant food during that time. It is interesting that the percentage presence and proportion of the minimum number of acorn starchy grains on grinding slabs are much higher than that on potteries in our studies. The traditional method of processing and cooking acorns has been studied. Acorns were dried, shelled, broken into pieces, and soaked in 0.5% alkaline water for 2 d, with the water changed each 20 m. The acorns were then dried and ground with tools to produce fine flour which could be used for food directly. Alternatively, during the processing cycle, hot water (70–80 °C) could also be used to soak acorns to remove the tannic acid and other soluble impurities that are harmful to human health (We et al., 2007). In this study, we found large quantities of acorn starchy grains were found on the grinding slabs but few on potteries. Therefore, we speculate that acorns were likely cooked with shells in the pottery vessels to remove the harmful ingredients and then processed with grinding stones to shell or grind into flour for food directly. This will explain why much more acorn starch remained on the surface of grinding stones, whereas very little remained on potteries.

5. Conclusion

In this study, 779 starch grains from 9 pottery fragments and 6 grinding slabs belonging to the early Xiaonhushan phase (9000–8500 cal. BP) are identified from Oryza, Triticaceae Tribe, C. lucryma-jobi, Q. spp., Nelumbo sp., D. opposita Trubn and Vigna, which indicates that people exploited many types of plants as their plant food during the early Neolithic in the Lower Yangtze River. The common recovery of rice starchy on pottery surfaces suggests that rice had become one of the major staples at the Xiaohuangshan site. This result provides important evidence for the beginning of rice cultivation in the early Neolithic Lower Yangtze River. The differences in the percentage presence and composition proportion of starches from acorns and rice recovered respectively on grinding stones and potteries suggest that grinding slabs were not used mainly to process rice in the Xiaohuangshan site, and plant residues extracted from the surfaces of grinding stones cannot be used independently to investigate the origin and exploitation degree of rice in that time.

Acknowledgements

We wish to thank Xiaoyan Yang, Li Liu, Xingcan Chen and Heng Zhang for their help during our sampling and experimental process. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA051305003), National Basic Research Program of China (Grant No. 2015CB953800), the National Natural Science Foundation of China (Grant No. 41472148) and the Philosophy and Social Science Planning Project of the Ministry of Education (Grant No. 15YJA780003).

References

Li, W., Song, G., Wu, Y., 2014. A preliminary analysis of starch grains on the surface of stone artifacts from the Kengnan Sinica (01), 70–81.
Yang, Y., Li, W., Yao, L., Cheng, Z., Zhang, J., 2015. Plant resources utilization at the Tanghu site during the Peiligang Culture period based on starch grain analysis, Henan province. Quaternary Sciences 35 (1), 229–239.

Please cite this article in press as: Yao, L., et al., Early Neolithic human exploitation and processing of plant foods in the Lower Yangtze River, China, Quaternary International (2016), http://dx.doi.org/10.1016/j.quaint.2016.03.009